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Abstract
High-throughput RNA sequencing (RNA-Seq) has emerged as a vital tool in transcriptomics, enabling the 

precise quantification of gene expression across diverse biological contexts. However, the issue of batch 

effects—systematic non-biological variations introduced during sample processing, library preparation, or 

sequencing—can obscure true biological signals and compromise the reproducibility of downstream analyses. 

This dissertation presents a comprehensive comparative analysis of batch correction methods in bulk RNA-Seq 

data, focusing on two major classes: empirical methods, which utilise known batch labels (e.g., ComBat, 

ComBat-Seq, limma), and surrogate variable approaches, which infer hidden sources of variation (e.g., 

Surrogate Variable Analysis, Remove Unwanted Variation). Using a dual approach, the study first employs 

simulated RNA-Seq datasets with controlled batch effects and embedded biological signals to benchmark each 

method’s ability to reduce technical noise while preserving genuine biological differences. The performance of 

these methods is then evaluated on a publicly available RNA-Seq dataset with documented batch annotations 

and known biological groupings.

Performance was assessed using a comprehensive suite of quantitative metrics evaluating both data 

harmonisation (e.g., PERMANOVA R², kBET, Batch Silhouette Score) and biological signal preservation (e.g., 

Biological Silhouette Score, cLISI). The central hypothesis centres on the context-dependent efficacy of batch 

correction, with empirical methods expected to excel when batch labels are clearly defined, and surrogate 

variable techniques offering advantages in scenarios with unobserved confounders. Results revealed a clear 

hierarchy of performance in removing technical variance, with linear model-based methods, such as ComBat 

and limma, demonstrating the most effective correction. The results demonstrated that while the uncorrected 

data showed samples clustering exclusively by batch, nearly all correction methods succeeded in removing the 

technical variance. Crucially, this process did not erase the biological signal but instead unmasked and 

enhanced it, leading to a significant improvement in the Biological Silhouette Score across all corrected 

datasets. This outcome refutes the concern that batch correction might invariably damage biological insights 

in noisy data. The findings of this research provide a powerful, data-driven demonstration that post-hoc 

computational tools are remarkably capable of rescuing and clarifying biological signals, even when they are 

completely obscured by batch effects. This work ultimately contributes to a more nuanced understanding of the 

synergy between sound experimental design and powerful computational analysis in ensuring the reliability 

and reproducibility of genomic studies.
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Introduction
The advent of high-throughput RNA sequencing (RNA-Seq) has fundamentally transformed the landscape of 

biological and biomedical research, providing an unprecedented ability to quantify gene expression with 

remarkable depth and precision (Liu and Markatou, 2016). As a cornerstone of modern transcriptomics, bulk 

RNA-Seq measures the average gene expression across a population of cells, enabling profound insights into 

complex biological processes, disease mechanisms, and therapeutic responses (Yu, Abbas-Aghababazadeh et 

al., 2020). Its application has become ubiquitous, from basic research exploring cellular pathways to 

translational studies aimed at identifying clinical biomarkers. However, the power of this technology is 

frequently undermined by a significant and persistent challenge: batch effects (Leek, Scharpf et al., 2010).

Batch effects are systematic, non-biological variations that arise from technical discrepancies during the 

experimental workflow (Wang and LeCao, 2020). These artefacts can be introduced at numerous stages, 

including differences in sample collection and handling, the use of different reagent lots or library preparation 

kits, variations in personnel, or sequencing runs performed on different machines or at various times. These 

technical factors introduce systematic noise that can be mistaken for, or completely overwhelm, the true 

biological signal of interest (Goh, Wang et al., 2017). The consequences of ignoring batch effects are severe; they 

can lead to an increase in false positives or false negatives in differential expression analysis, result in spurious 

clustering of samples, and ultimately drive misleading biological conclusions, thereby compromising the 

reproducibility and reliability of scientific findings. As research projects grow in scale and complexity, often 

involving the integration of datasets from multiple labs or generated over extended periods, the challenge of 

mitigating batch effects has become more critical than ever.  

Paradigms of Correction: Known vs. Unknown Confounders

To address this issue, the bioinformatics community has developed a diverse array of computational methods 

for batch effect correction. These methods can be broadly categorised into two philosophical paradigms, 

distinguished by whether they require prior knowledge of the technical groupings.

The first group consists of empirical methods, which rely on known, user-specified batch labels to model and 

remove technical variation. Among the most established of these are ComBat, an empirical Bayes method that 

"borrows" information across genes to stabilise batch effect estimates ( Johnson, Li et al., 2007), and 

limma::removeBatchEffect, which uses a linear model to regress out the variation associated with known batch 

covariates (Ritchie, Phipson et al., 2015). These methods are powerful and widely used, particularly in studies 

where batch information is well-documented.

The second group encompasses surrogate variable methods, which are designed to address scenarios where the 

sources of technical variation are unknown, unmeasured, or too complex to be captured by simple batch labels. 

These approaches operate in an unsupervised or semi-supervised manner, estimating latent sources of 

variation directly from the gene expression data itself (Parker, Leek et al., 2014). Seminal methods in this 

category include Surrogate Variable Analysis (SVA) and Remove Unwanted Variation (RUV) (Leek, Johnson et al., 

2012). SVA identifies and constructs "surrogate variables" that represent abstract sources of heterogeneity, 

which can then be included as adjustment covariates in downstream statistical models. RUV, in contrast, often 

leverages a set of negative control genes—genes assumed to be unaffected by the biological condition of 

interest—to estimate and remove unwanted technical factors (Risso, 2015).  
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The Knowledge Gap and Research Question

While a plethora of batch correction tools exists, there is a recognised knowledge gap regarding their 

comparative performance and the specific contexts in which each method excels, particularly for bulk RNA-Seq 

data. The choice of an appropriate method is not trivial, as an overly aggressive correction might inadvertently 

remove subtle biological signals, while an insufficient correction will fail to harmonise the data effectively (Liu 

and Markatou, 2016). This trade-off between the removal of technical noise and the preservation of biological 

fidelity lies at the heart of the batch correction problem. Although numerous benchmark studies have been 

conducted, many have focused on single-cell RNA-Seq (scRNA-seq) data, which presents unique challenges such 

as high sparsity and dropout rates that differ from those in bulk RNA-Seq (Tran, Ang et al., 2020). A systematic, 

head-to-head comparison of the primary empirical and surrogate variable methods for bulk RNA-Seq, using a 

comprehensive suite of modern evaluation metrics, is therefore essential for establishing clear, data-driven best 

practices. This dissertation seeks to fill this gap by conducting a rigorous comparative analysis of these two 

classes of batch correction methods. 

The central research question is:

How do empirical and surrogate variable-based batch correction methods compare in their ability to remove 

technical variance while preserving true biological signals in bulk RNA-Seq data under controlled conditions?

Hypothesis
The central hypothesis of this study is that the performance of a batch correction method is highly context 

dependent. It is hypothesised that empirical methods like ComBat and limma will demonstrate superior 

performance in datasets where batch labels are well-defined, balanced, and accurately reflect the primary 

sources of technical variation. Conversely, surrogate variable methods like SVA are expected to provide a more 

robust correction in scenarios characterised by complex, nested, or unobserved confounding factors.

Furthermore, this study tests a critical secondary hypothesis: in scenarios where a strong batch effect 

completely obscures the biological signal, but not fundamentally confounded, robust computational 

correction algorithms can successfully disentangle these sources of variation. It is hypothesised that effective 

batch removal will not diminish the biological signal, but will rather clarify and strengthen it, leading to more 

coherent biological clustering and improved statistical power in downstream analyses.  

To investigate these hypotheses, this dissertation is structured as follows. Chapter 1 provides a comprehensive 

review of the literature on batch effects in RNA-Seq, tracing the evolution of correction methodologies and 

deconstructing the theoretical foundations of the key methods under evaluation. Chapter 2 details the 

benchmarking framework, including the simulation of a controlled dataset with known batch and biological 

effects, the description of a real-world validation dataset, and the justification for the multi-faceted suite of 

quantitative evaluation metrics. Chapter 3 presents the core empirical results of the comparative analysis, 

systematically evaluating nine distinct correction methods against the uncorrected baseline. Chapter 4 

synthesises these findings in a detailed discussion, interpreting the method-specific performances and focusing 

on the critical implications of the observed confounding between batch and biological signals. Finally, Chapter 

5 concludes the dissertation with a summary of the principal findings, a statement on the work's contribution to 

the field, and recommendations for both practising researchers and future avenues of investigation.
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Chapter 1: Batch Effects and Correction Strategies 

in Transcriptomics

1.1 Technical Artefacts in RNA-Seq

A comprehensive understanding of batch correction begins with a detailed appreciation of the origins of batch 

effects. These systematic technical variations are not random noise but are deterministic artefacts introduced 

during the multi-step RNA-Seq experimental workflow. Their genesis can be traced to nearly every phase of 

sample handling and data generation, creating complex patterns of unwanted variation that can confound 

biological interpretation (Yu, Abbas-Aghababazadeh et al., 2020).  

The process begins with sample acquisition and processing. Variations in sample collection protocols, storage 

conditions, or the time elapsed before processing can introduce systematic differences. For instance, samples 

collected on different days may be subject to different environmental conditions (Čuklina, Pedrioli et al., 2020), 

or samples handled by different technicians may undergo subtle variations in protocol execution. These initial 

discrepancies can alter RNA integrity and create batch-specific signatures before sequencing even begins.  

The library preparation stage is a particularly potent source of batch effects. This complex biochemical process 

involves numerous steps, including RNA fragmentation, reverse transcription, adapter ligation, and PCR 

amplification. Different lots of reagents or enzymes can exhibit varying efficiencies, leading to systematic biases 

in the resulting sequencing libraries (Shi, Zhou et al., 2021). For example, a new batch of reverse transcriptase 

may have a slightly different processivity, or a different lot of PCR primers could have altered amplification 

efficiency, creating multiplicative effects on the expression counts of samples processed with those reagents. 

The choice between different library preparation strategies, such as Poly-A selection versus ribosomal RNA 

depletion, can itself be a massive source of batch effect when attempting to combine data from studies that used 

different methods.  

Finally, the sequencing process itself introduces another layer of technical variation. Sequencing instruments 

are complex, and runs performed on different machines, or even on different flow cells or lanes of the same 

machine, can produce systematically different results (Zaitsev, Chelushkin et al., 2022). Factors such as 

variations in laser intensity, camera calibration, or flow cell chemistry can all contribute to batch-specific biases. 

When studies are scaled up and require multiple sequencing runs to accommodate all samples, these run-to-run 

differences become a primary driver of batch effects. The cumulative impact of these myriad factors is a dataset 

where samples cluster more strongly by their technical processing group (i.e., their batch) than by their true 

biological condition, necessitating computational intervention.  
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1.2 Evolution of Correction Methodologies: From Microarrays 

to Counts

The challenge of batch effects is not unique to RNA-Seq; it was a well-recognised problem in the era of DNA 

microarrays ( Johnson, Li et al., 2007). Early batch correction methods were developed to handle the statistical 

properties of microarray data, which, after normalisation and log-transformation, were typically modelled as 

continuous data following a Gaussian (normal) distribution (Wang and LeCao, 2020). The original ComBat 

algorithm, for example, was designed within this framework, using an empirical Bayes approach to adjust for 

additive and multiplicative batch effects in normally distributed data.  

However, direct applications of microarray tools to RNA-Seq data are statistically inappropriate. Unlike 

microarray intensities, RNA-Seq data are fundamentally different: they are discrete counts of sequencing reads 

that map to genes (Li and Wang, 2021). These counts exhibit distinct statistical properties that violate the 

assumptions of Gaussian-based models. Specifically, RNA-Seq count data are characterised by:  

A strong mean-variance relationship: The variance of a gene's expression is not independent of its mean; 

typically, genes with higher average expression also have higher variance.  

Overdispersion: The observed variance is often significantly larger than the mean, a feature not captured by a 

simple Poisson distribution.  

Skewness: The distribution of counts for a given gene is often highly skewed, especially for lowly expressed 

genes.

Modelling these properties with a Gaussian distribution is a poor approximation that can lead to erroneous 

results. Furthermore, applying methods like the original ComBat to log-transformed counts can produce non-

integer and even negative values, which are biologically uninterpretable and incompatible with many popular 

downstream differential expression analysis tools like DESeq2 and edgeR, which require raw or integer-like 

count data as input (Anders and Huber, 2010).  

This statistical mismatch spurred the development of a new generation of batch correction methods specifically 

tailored for RNA-Seq count data. The most prominent of these adapted the successful logic of earlier methods 

to a more appropriate statistical framework. ComBat-Seq, for instance, evolved directly from ComBat but 

replaced the Gaussian model with a negative binomial (NB) regression model (Zhang, Parmigiani et al., 2020). 

The NB distribution is well-suited to model over-dispersed count data and naturally accounts for the mean-

variance relationship. By operating directly on raw counts and adjusting within the NB framework, ComBat-Seq 

can remove batch effects while preserving the integer nature of the data, thus ensuring compatibility with the 

entire RNA-Seq analysis ecosystem. This evolution from continuous models to count-based models represent a 

critical maturation in the field of batch correction, aligning the statistical tools with the fundamental nature of 

the data they are designed to analyse.  
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1.3 Empirical Methods (Known Batches)

Empirical batch correction methods form the bedrock of post-hoc data harmonisation. These algorithms 

operate under the assumption that the technical batches are known and have been explicitly provided by the 

user. They work by directly modelling the variation attributable to these batch labels and removing it from the 

expression data (Zhang, Jenkins et al., 2018). Within this category, two approaches are particularly foundational: 

linear model-based adjustment and empirical Bayes methods.

1.3.1 Linear Model-Based Adjustment (Limma)

The removeBatchEffect function, part of the widely used limma R package, represents a straightforward and 

powerful approach to batch correction (Ritchie, Phipson et al., 2015). Its methodology is rooted in linear 

modelling. The function takes a matrix of log-transformed expression values and fits a linear model to the data 

for each gene (Smyth and Speed, 2003). This model includes terms for the biological variables of interest (which 

are to be preserved) as well as a term for the known batch variable (which is to be removed).

The underlying model can be conceptualised as: 

𝑌𝑔𝑠 = 𝑋𝑠𝛽𝑔 + 𝑍𝑠𝛾𝑔 + 𝜖𝑔𝑠

Where:

• 𝑌𝑔𝑠  is the log-transformed expression value for gene g in sample s.

• 𝑋𝑠   is the row vector for sample s from the biological design matrix (representing variables to be 

preserved).

• 𝛽  is the vector of biological coefficients for gene g.

• 𝑍𝑠  is the row vector for sample s from the batch design matrix (representing variables to be removed).

• 𝛾𝑔𝑠 is the vector of batch effect coefficients for gene g.

• 𝜖𝑔𝑠  is the random error term.

γg associated with the batch factor and then subtracts this component (Zsγg) from the original expression data, 

yielding a new expression matrix that is adjusted for the batch effect while retaining the variation associated 

with the biological design Xs (Smyth and Speed, 2003).  

The primary strengths of this approach are its simplicity, computational speed, and flexibility. It can easily 

accommodate complex biological designs. However, it has limitations. As a linear model, it is most effective at 

removing additive batch effects and may be less successful in correcting more complex, non-linear, or 

multiplicative artefacts (Leek, Scharpf et al., 2010).
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1.3.2 Empirical Bayes Methods (ComBat & ComBat-Seq)

The ComBat family of algorithms represents a more sophisticated empirical approach that leverages the power 

of empirical Bayes (EB) statistics ( Johnson, Li et al., 2007). The core idea behind the EB framework is to improve 

the estimation of parameters for individual features (genes) by "borrowing strength" from the entire ensemble 

of features. In the context of batch correction, this means that the estimates of the batch effect parameters for a 

single gene are stabilised by shrinking them towards a common prior distribution estimated from all genes. This 

is particularly valuable in typical genomics experiments where the number of samples per batch is small, making 

the gene-wise estimation of batch effects unstable and prone to noise.  

The original ComBat algorithm models the expression data for gene g in sample j from batch i as: 

𝑌𝑔𝑖𝑗 = 𝛼𝑔 + 𝑋𝛽𝑔 + 𝛾𝑔𝑖 + 𝛿𝑔𝑖𝜖𝑔𝑖𝑗

Where:

• 𝑌𝑔𝑖𝑗  is the expression of gene g for sample j in batch i.

• 𝛼𝑔   is the overall mean expression for gene g.

• 𝑋𝛽𝑔   represents the effects of biological covariates that are preserved.

• 𝛾𝑔𝑖   is the additive batch effect for gene g in batch i.

• 𝛿𝑔𝑖    is the multiplicative batch effect (scaling factor) for gene g in batch i.

• 𝜖𝑔𝑖𝑗   is the random error, assumed to follow 𝑁(0, 𝜎𝑔
2 ).

Here, γgi represents an additive batch effect and δgi represents a multiplicative batch effect (scaling factor) for 

batch i on gene g. ComBat uses the EB framework to derive robust estimates for γgi and δgi and then adjusts the 

data to a common level of expression. As discussed, this model assumes normally distributed data.  

ComBat-Seq adapts this powerful logic for RNA-Seq count data by embedding it within a negative binomial (NB) 

generalized linear regression model (GLM) framework (Zhang, Parmigiani et al., 2020). The model for the count 

ygij is: 

𝑀𝑜𝑑𝑒𝑙 𝐷𝑖𝑠𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛: 𝑌𝑔𝑖𝑗 ∼ 𝑁𝐵(𝜇𝑔𝑖𝑗 , 𝜙𝑔𝑖)

Mean Model: log(𝜇𝑔𝑖𝑗) = 𝛼𝑔 + 𝑋𝑗𝛽𝑔 + 𝛾𝑔𝑖 + log 𝑁𝑗  *

𝑉𝑎𝑟𝑖𝑎𝑛𝑐𝑒 𝑀𝑜𝑑𝑒𝑙: 𝑣𝑎𝑟(𝑦𝑔𝑖𝑗) = 𝜇𝑔𝑖𝑗 + 𝜙𝑔𝑖𝜇2
𝑔𝑖𝑗

* 𝑙𝑜𝑔𝑁𝑗 is an offset term for library size, which is implicitly part of the GLM but often omitted from the simplified model equation for clarity.

Where:

• 𝑌𝑔𝑖𝑗 is the raw count for gene g, sample j, in batch i.

• 𝑁𝐵 stands for the Negative Binomial distribution.

• 𝜇𝑔𝑖𝑗  is the mean of the NB distribution.

• 𝜙𝑔𝑖  is the dispersion of the NB distribution, which is modelled as batch specific.
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The second equation models the logarithm of the mean, where γgi is the batch effect term to be estimated and 

removed.

In this formulation, the batch effect is modelled through both a location parameter (γgi) affecting the mean 

expression (μgij) and a batch-specific dispersion parameter (ϕgi) affecting the variance. This allows ComBat-

Seq to correct for batch effects in both the average expression level and the gene's variability. After estimating 

these parameters, ComBat-Seq uses a quantile-matching procedure to generate adjusted counts that follow a 

"batch-free" NB distribution, crucially preserving the integer nature of the data. This makes ComBat-Seq a 

theoretically robust and practically convenient method, as its output can be directly passed to downstream 

count-based analysis tools.  

1.4 Latent Variation: Surrogate Variable Analysis (SVA)

While empirical methods are effective when batch information is known and accurate, many experiments are 

affected by sources of variation that are unknown, unmeasured, or too complex to be defined by a simple batch 

label. Environmental factors, subtle technical drift, or hidden biological heterogeneity can all act as 

confounding variables (Leek, Johnson et al., 2012). Surrogate variable methods were developed to address 

precisely this challenge by estimating these latent sources of variation directly from the high-dimensional data 

itself.  

1.4.1 SVA Framework

Surrogate Variable Analysis (SVA) is a powerful statistical method for identifying and accounting for unmodeled 

sources of variation in high-throughput data. The central premise of SVA is that the cumulative effect of all 

unmodeled factors—be they technical or biological—manifests as systematic patterns in the gene expression 

matrix. SVA aims to capture these patterns and represent them as a set of new covariates, termed "surrogate 

variables" (SVs).  

The SVA algorithm operates in several steps. Broadly, it first fits a model containing only the known variables of 

interest (e.g., the primary biological condition) and calculates the residuals. These residuals represent the 

variation in the data that is not explained by the primary variables. The algorithm then performs a singular value 

decomposition (SVD) on this residual matrix to identify the major axes of remaining variation. Through a 

statistical procedure, it determines which of these axes represent significant, non-random signals and 

constructs the SVs as representations of these latent factors (Leek, Johnson et al., 2012).  

The resulting SVs are quantitative variables that can be included as adjustment covariates in subsequent 

statistical analyses (e.g., differential expression analysis) alongside the primary variables of interest. The model 

becomes: 

𝑌 = 𝑋β + Zγ + Ε

where:

• 𝑌 is the 𝑚×𝑛 expression matrix (genes × samples).

• 𝑋 is the design matrix of observed covariates (e.g., biological condition).

• β is the corresponding coefficient matrix.

• 𝑍 is the matrix of surrogate variables representing latent/unmodeled factors.

• 𝐸 is the residual error.
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By including the SVs, the analysis effectively adjusts for the unknown confounding factors they represent, 

leading to more accurate estimates of the effects of the primary variables, reduced false positives, and improved 

reproducibility. SVA is thus a powerful tool for "cleaning" genomic data from the effects of hidden confounders 

without requiring any prior knowledge of what those confounders are.  

1.4.2 RUV (Remove Unwanted Variation)

Remove Unwanted Variation (RUV) is an alternative framework for estimating and removing latent variation, 

which is conceptually similar to SVA but often employs a different strategy for estimation (Gagnon-Bartsch and 

Speed, 2012). One common implementation,  

RUVg relies on a set of user-defined "negative control" genes. These are genes that are known or assumed a priori 

to be associated with the biological condition of interest.

𝑌𝑔  = 𝑋𝛽𝑔  + 𝑊𝛼𝑔 + 𝜖𝑔

Where:

• 𝑌𝑔  is the vector of expression for gene g across all samples.

• 𝑋𝛽𝑔  represents the effects of the known biological variables of interest.

• 𝑊is the matrix of the estimated factors of unwanted variation (e.g., batch effects), which is estimated 

from control genes or replicates.

• 𝛼𝑔  is the vector of coefficients for the unwanted factors for gene g.

• 𝜖𝑔  is the vector of random errors for gene g.

The logic of RUVg is that any variation observed in these control genes across samples must be due to unwanted 

technical or other confounding factors, since it cannot be due to the biological effect being studied (Cole, Risso 

et al., 2019). The algorithm uses a factor analysis approach on the expression of these control genes to estimate 

the underlying factors of unwanted variation. Once these factors are estimated, their effect can be removed 

from the expression data for all genes, effectively correcting the entire dataset.

The strength of this approach lies in its use of specific biological knowledge (the identity of control genes) to 

anchor the estimation of technical noise. However, its performance is critically dependent on the quality and 

validity of the chosen control genes (Evans, Hardin et al., 2018). If the control genes are not truly "negative" and 

are affected by the biological condition  (Cole, Risso et al., 2019), or if they are not representative of the technical 

noise affecting all other genes, the correction can be biased or incomplete (Lin, Golovnina et al., 2016). This 

provides a conceptual contrast to SVA, which uses a more global, data-driven approach to estimate latent 

variation without relying on a specific subset of control genes (Yu, Mai et al., 2024).
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1.5 Advanced Integration Methods (Known Batches)

With the rise of single-cell genomics, a new class of batch correction, often termed data integration, has 

emerged. These methods also require known batch labels but are designed to handle the specific challenges of 

single-cell data: high dimensionality, sparsity (excess zeros), and complex, non-linear batch effects. 

Furthermore, they are often built to align datasets where the biological composition (i.e., the proportions of 

different cell types) varies between batches. They typically operate in a reduced-dimensional space (e.g., 

principal component analysis space) to improve computational efficiency and focus on the major axes of 

variation.

1.5.1 Mutual Nearest Neighbours (fastMNN)

The fastMNN algorithm is a landmark method for single-cell data integration that is particularly robust to 

differences in cell population abundance across batches (Haghverdi, Lun et al., 2018). Its core principle is to 

identify Mutual Nearest Neighbours (MNNs)—pairs of cells, one from each batch, that are each other's closest 

neighbour in the high-dimensional gene expression space. The central assumption is that these MNN pairs 

represent cells of the same biological state or type that are only separated by a technical batch effect.

The correction process works as follows:

1. Dimensionality Reduction: The algorithm first projects the expression data for each batch into a 

shared, lower-dimensional space, typically using Principal Component Analysis (PCA).

2. MNN Identification: It then identifies MNN pairs between two batches in this reduced space. For a cell 

A in Batch 1, it finds its nearest neighbours in Batch 2. For a cell B in Batch 2, it finds its nearest 

neighbours in Batch 1. If A is a nearest neighbour of B, and B is a nearest neighbour of A, they form an 

MNN pair.

3. Batch Vector Calculation: For each MNN pair identified, a batch correction vector is calculated as the 

vector difference between the coordinates of the two cells. These vectors essentially quantify the 

technical shift between the batches for a specific cell type.

𝑉𝐴 → 𝐵 = 𝑝𝑏 − 𝑝𝑎

4. Correction Application: The algorithm computes a robust, weighted average of these vectors and 

applies it to the cells in one batch, effectively "translating" them to align with the other batch in the 

shared embedding.

𝑝𝑖, 𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑒𝑑 = 𝑝𝑖 + 𝑘 ∈ 𝑀𝑁𝑁𝑠 ∑ 𝑤𝑘𝑉𝐴 → 𝐵, 𝑘

•  𝑝𝑖: The original PCA coordinates of cell ci.

•  𝑤𝑘: A weight for the k-th MNN pair, typically calculated using a Gaussian kernel, giving more 

influence on closer pairs.

This procedure is performed sequentially to merge multiple batches. By anchoring the correction on these 

biologically similar MNN pairs, fastMNN avoids making assumptions about the overall data distribution and can 

effectively correct for complex batch effects even when some cell types are entirely absent from one of the 

batches. Its "fast" implementation performs the neighbour search in a reduced-dimensional space, making it 

computationally tractable for large single-cell datasets.
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1.5.2 Iterative Clustering-Based Integration (Harmony)

Harmony is another popular and highly scalable algorithm designed for single-cell data integration (Korsunsky, 

Millard et al., 2019). Unlike the pairwise approach of MNN, Harmony considers all cells from all batches 

simultaneously. Its goal is to create a joint, low-dimensional embedding where cells are grouped by biological 

identity, irrespective of their batch of origin. It achieves this through an iterative correction process based on 

soft clustering.

The Harmony workflow can be summarized in these steps:

1. Initial Embedding: All cells from all batches are projected into a common low-dimensional space (e.g., 

PCA). In this initial embedding, cells often cluster first by batch and second by cell type.

2. Iterative Refinement: Harmony then repeats the following two steps until convergence:

• Soft Clustering: Cells are grouped into multiple soft clusters. This means each cell is assigned 

a probability of belonging to each cluster, rather than a hard assignment to a single cluster. 

This allows for smooth transitions between cell states.

• Batch Correction: Within each cluster, Harmony computes a cluster-specific correction 

factor for each batch. It calculates the centroid (average position) for the entire cluster and 

the centroid for the cells from each batch within that cluster. 

𝛿𝑖 = 𝑘 = ∑ 𝑅𝑖𝑘  (𝜇𝑘𝑏(𝑖) −

𝐾

𝐾=1

𝜇𝑘

o 𝑏(𝑖) is the batch of cell i.

o This formula calculates a personalized correction for cell i by taking a weighted 

average of the batch shifts (μkb(i)−μk) across all clusters, where the weights are the 

cell's probability of belonging to each cluster (Rik).

• Coordinate Update: The cell's coordinates (pi ) are updated by subtracting this correction 

term:

𝑝𝑖 , 𝑛𝑒𝑤 = 𝑝𝑖,𝑜𝑙𝑑 − 𝛿𝑖

The correction vector for each cell aims to shift its batch's centroid to align with the global 

cluster centroid.

3. Final Embedding: This iterative process continues until the clusters are maximally mixed with cells 

from all batches, indicating that the batch effect has been removed. The output is a corrected low-

dimensional embedding (the "Harmony coordinates"), which can be used for downstream 

visualization (e.g., UMAP) and clustering.

Harmony's key strengths are its speed, memory efficiency, and flexibility. It can integrate millions of cells from 

dozens of batches and can simultaneously model other known covariates (e.g., donor ID, experimental 

condition) in addition to batch. By directly producing a corrected embedding, it provides a ready-to-use result 

for common single-cell analysis tasks.
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1.6 Advancements and Cross-Disciplinary Insights

The field of batch correction is continuously evolving, driven largely by the new challenges and opportunities 

presented by single-cell RNA sequencing (scRNA-seq). The sheer scale and complexity of scRNA-seq data—often 

involving the integration of millions of cells from dozens of batches—have spurred the development of highly 

scalable and sophisticated algorithms. Methods like Mutual Nearest Neighbours (MNN) and Harmony have 

become prominent in this space. MNN-based methods, such as  

fastMNN works by identifying pairs of cells in different batches that are mutual nearest neighbours in the high-

dimensional expression space, assuming these pairs represent the same cell type (Hatfield, Hung et al., 2003) 

(Zhang, Wu et al., 2019). The vectors between these pairs are then used to compute and apply a correction 

(Haghverdi, Lun et al., 2018). Harmony uses an iterative clustering approach to project cells from all batches into 

a shared embedding where batch effects are minimised (Korsunsky, Millard et al., 2019b). While this dissertation 

focuses on bulk RNA-Seq, the principles of these advanced alignment and integration strategies inform the 

broader understanding of data harmonisation.  

Even within the established ComBat framework for bulk RNA-Seq, innovation continues. A very recent 

development is ComBat-ref, a refinement of ComBat-Seq designed to enhance statistical power in differential 

expression analysis (Zhang, 2024).  

ComBat-ref introduces a novel strategy: it first identifies the batch with the smallest internal dispersion and 

designates it as a "reference batch" (Zhang, 2024). It then preserves the count data from this reference batch 

untouched and adjusts all other batches to match the statistical properties of the reference. The rationale is that 

by anchoring the correction to the highest-quality batch, the method can avoid over-correction and better 

preserve the underlying biological variance structure, potentially leading to improved sensitivity in detecting 

differentially expressed genes (Sanders, Chok et al., 2023). The emergence of methods like ComBat-ref 

demonstrates that even for the well-studied problem of bulk RNA-Seq batch correction, there is ongoing 

research to develop more nuanced and powerful solutions.
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Table 1.1: Comparative overview of batch effect correction methods. Summary of commonly used approaches for correcting 
batch effects in bulk RNA-seq and related high-throughput experiments. Each method is categorised by its paradigm, 

underlying principle, data requirements, whether prior knowledge of batch labels is necessary, and its main strengths and 
weaknesses.

Method Paradigm Core Principle Required 
Input Data

Known 
Batches?

Strengths Weaknesses

Limma 
removeBatchEffect

Empirical Fits a linear model 
to regress out 
known batch 
variation.

Log-
transformed

Yes Simple, fast, 
and effective 
for additive 
effects.

Less effective 
for complex, 
non-linear 
batch effects.

ComBat Empirical Uses empirical 
Bayes to stabilize 
batch effect 
estimates (additive 
& multiplicative).

Log-
transformed

Yes Robust for 
small batches 
by “borrowing 
strength” 
across genes.

Assumes 
normally 
distributed 
data; less ideal 
for raw counts.

ComBat-Seq Empirical Adapts ComBat to 
a Negative 
Binomial model, 
respecting count 
data properties.

Raw Counts Yes Preserves 
integer nature 
of data; robust 
for RNA-Seq.

May be less 
aggressive 
than linear 
models in 
some 
contexts.

ComBat-Ref Empirical Adjusts data to 
match a designated 
high-quality 
reference batch.

Raw Counts Yes Avoids over-
correction; 
better 
preserves 
biological 
structure.

Performance 
depends on 
the chosen 
reference 
batch quality.

SVA Surrogate 
Variable

Estimates unknown 
variation 
(surrogate 
variables) from the 
data.

Log-
transformed

No Powerful when 
batch labels are 
unknown; 
captures 
hidden 
confounders.

Performance 
depends on 
biological 
signal 
strength.

SVA-Seq Surrogate 
Variable

Variant of SVA 
adapted for count 
data.

Raw Counts No Unsupervised; 
designed for 
RNA-Seq 
counts.

Interpretation 
of surrogate 
variables can 
be abstract.

RUVg Surrogate 
Variable

Estimates 
unwanted variation 
using negative 
control genes.

Raw Counts No Anchors 
technical noise 
in biological 
knowledge.

Critically 
dependent on 
correct 
control gene 
selection.

RUVs Surrogate 
Variable

Estimates 
unwanted variation 
using replicate 
samples.

Raw Counts No Leverages 
replicate 
design to 
model 
technical 
noise.

Requires 
technical 
replicates in 
the design.

PCA Correction Other Regresses out 
principal 
components 
correlated with 
batch labels.

Log-
transformed

Yes Conceptually 
simple and 
intuitive.

May remove 
biological 
signal aligned 
with PCs.

fastMNN Advanced 
Integration

Aligns datasets via 
Mutual Nearest 
Neighbours in 
reduced-
dimensional space.

Log-
transformed

Yes Robust to 
compositional 
variation; 
designed for 
complex 

Bulk RNA-Seq 
performance 
less 
established.
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scRNA-seq 
data.

Chapter 2: Framework for Benchmarking Batch 

Correction Performance

2.1 Controlled Evaluation

The evaluation of batch correction efficacy is a non-trivial task that demands a rigorous and multi-faceted 

approach. Historically, a common method for assessing correction has been the visual inspection of low-

dimensional embeddings, such as Principal Component Analysis (PCA) plots (Tran, Ang et al., 2020). In this 

approach, a successful correction is inferred if samples from different batches, which were previously 

separated, appear well-mixed in the post-correction plot. However, this method is inherently subjective and can 

be misleading. Low-dimensional representations can obscure complex, higher-dimensional structures, and the 

perception of "good mixing" is not quantitatively defined (Hui, Kong et al., 2024). A method might appear to 

integrate batches visually while simultaneously distorting the underlying biological relationships between 

samples (Nyamundanda, Poudel et al., 2017).  

To overcome these limitations, a robust benchmarking framework must be established. Such a framework relies 

on two key components. First, the use of realistic simulated datasets where the "ground truth"—the true 

biological signal and the precise nature of the batch effect—is known and controlled (Tran, Ang et al., 2020). This 

allows for an objective assessment of a method's ability to remove the known artefact while preserving the 

known signal (Lütge, Zyprych-Walczak et al., 2021). Second, the use of a comprehensive suite of quantitative 

metrics that evaluate performance from multiple perspectives (Tran, Ang et al., 2020). Relying on a single metric 

is risky, as it may capture only one aspect of performance. For instance, a metric that only measures batch 

removal might favour an overly aggressive method that erases biological structure along with the technical 

noise. A truly informative evaluation, therefore, requires a combination of metrics that independently assess 

the degree of data harmonisation and the preservation of biological fidelity (Hu, Li et al., 2025). This chapter 

outlines the design of such a framework, which was used to systematically evaluate the performance of the 

selected batch correction methods.  

2.2 Synthetic Data Generation: A Controlled Environment

To create a controlled setting for evaluation, a synthetic bulk RNA-Seq dataset was generated where both the 

biological signal and the batch effects could be precisely defined and manipulated. This approach allows for an 

unambiguous assessment of each correction method's performance against a known ground truth.

2.2.1 Simulation Strategy

The synthetic dataset was generated using the SPsimSeq framework in the R programming language.  

SPsimSeq is a semi-parametric simulation tool that generates realistic RNA-Seq data by sampling from a real-

world reference dataset (Assefa, Vandesompele et al., 2020), thereby preserving complex features like gene-

gene correlations and expression distributions. For this study, a subset of the high-risk neuroblastoma dataset 
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from Zhang et al. (2015) was used as the reference template. This ensures that the simulated data reflects the 

statistical properties of genuine biological data. The simulation was configured to generate a dataset 

comprising 10,000 genes across a total of 172 samples, providing a realistically scaled environment for testing.  

2.2.2 Embedding Ground Truth

A critical aspect of the simulation was the explicit embedding of both a biological signal and a technical batch 

effect. The biological signal was introduced by designating 10% of the 10,000 genes as differentially expressed 

(DE) between two simulated biological conditions (Gerard, 2020). To ensure this signal was non-trivial, a 

minimum log₂-fold-change of 0.5 was enforced for these DE genes (Zhang, Jhaveri et al., 2014).  

After the initial generation of a single-batch dataset, artificial batch effects were introduced post-simulation to 

create a three-batch structure, with samples randomly and approximately equally assigned to each batch (n ≈ 57 

per batch). The batch effects were introduced in two distinct ways to mimic the complexity of real-world 

artefacts:

1. Uniform Multiplicative Effect: For samples assigned to Batch 2 and Batch 3, the counts of all genes 

were multiplied by a constant factor (e.g., 1.2). This simulates a simple, global shift in library size or 

sequencing depth, an additive effect on the log scale (Zappia, Phipson et al., 2017).

2. Gene-Specific Multiplicative Effect: To simulate a more complex batch phenomenon where technical 

biases affect genes differently, gene-specific multiplicative factors were applied (Lütge, Zyprych-

Walczak et al., 2021). For samples in Batches 2 and 3, these factors were drawn from a log-normal 

distribution (with mean μ=0 and standard deviation σ=0.1 on the log scale) and then applied to each 

gene's count individually.  

This dual approach to introducing batch effects creates a challenging yet controlled moderate-to-strong batch 

effect test case, reflecting the magnitude of technical variation often observed in multi-site genomic studies and 

ensuring a challenging but realistic test case for the correction methods

2.2.3 Simulation Validity Assessment

To ensure the synthetic dataset provided a realistic and appropriate challenge for the benchmarking of batch 

correction methods, a series of validity checks were performed. These checks confirmed that the simulated data 

accurately reflects the statistical properties of genuine bulk RNA-Seq data and that the embedded batch and 

biological effects were structured as intended. The results of this validation are summarised in Figure 2.1 and 

Table 2.1.

The simulation successfully generated a clean, integer-based count matrix with 10,000 genes and 172 samples, 

free of missing or non-finite counts. The data exhibited key characteristics of real-world RNA-Seq data, including 

a strong mean-variance relationship typical of over-dispersed count data, with a negative binomial dispersion 

parameter (α) estimated at 0.581 (Figure 2.1).
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Figure 2.1: Simulation Validity and Data Characteristics.
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The plots confirm the successful simulation of realistic RNA-Seq data. (Top Left) Library size distributions differ 

across batches. (Top Middle) Sparsity (zero fraction) is consistent with bulk RNA-Seq. (Top Right) The mean-

variance plot shows a clear relationship, characteristic of count data. (Bottom Left) Log-fold changes (LFC) 

relative to a reference batch show the magnitude of the simulated batch effect. (Bottom Right) LFC for the true 

differentially expressed genes representing the biological signal.

The embedded batch effect was confirmed to be substantial. The distributions of library sizes and log-fold 

changes differed markedly between the simulated batches (Figure 2.1). A PERMANOVA test confirmed the 

severity of the effect, with the batch variable explaining 51.3% of the total variance in the uncorrected data (𝑅2 =

0.513). Crucially, a chi-squared test for independence between the simulated batch assignments and the 

biological condition labels yielded a p-value of 1.0, with a Cramér's V (Bergsma, 2013) of 0.000, confirming that 

the batch effect was not confounded with the biological signal.

This establishes an idealised, albeit challenging, scenario for batch correction: a strong, pervasive technical 

effect is present, but it is statistically independent of the biological variable of interest. This allows for an 

unambiguous evaluation of each method's ability to remove the former while preserving the latter.

Table 2.1: Simulation Validity and Data Characteristics.

Metric Value
Data Integrity
Counts are integer 1.000
Any NA / Inf / negative values 0.000
Batch Effect
Batch PERMANOVA R² 0.513
Median log₂FC (Batch 2 vs Ref) 0.637
Median log₂FC (Batch 3 vs Ref) -1.051
Design Confounding
Independence p-value (batch vs bio) 1.000
Cramér's V (batch vs bio) 0.000
Biological Signal
TPR (uncorrected DE analysis) 1.000
FPR (uncorrected DE analysis) 0.863
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2.3 Real-World Validation: Zhang et al. (2015) Neuroblastoma 

Dataset

While simulated data is essential for controlled evaluation, it is equally important to assess method 

performance on a real-world dataset, where batch effects are authentic and potentially more complex than a 

simulation can fully capture. For this purpose, a subset of the public RNA-Seq dataset from was utilised. This 

dataset was specifically chosen because the MYCN amplification is a well-characterized, powerful oncogenic 

driver in neuroblastoma, known to cause widespread transcriptomic changes. This provides an unambiguous 

'ground truth' biological signal against which the preservation capabilities of each correction method can be 

rigorously assessed. In addition to this biological variable, the dataset has a documented batch structure arising 

from its generation process.

The key feature of this dataset for the present study is the presence of a known, strong biological signal: the 

amplification status of the MYCN oncogene. Samples are categorised as either MYCN-amplified (MYCN.status 

= 1) or non-amplified (MYCN.status = 0), a distinction known to drive widespread changes in the 

transcriptomic landscape of neuroblastoma. In addition to this biological variable, the dataset has a 

documented batch structure arising from its generation process. This provides a real-world scenario to test the 

ability of correction methods to remove the documented technical variation while preserving the distinct 

biological clustering driven by MYCN status.

2.4 The Analytical Pipeline

A standardised and reproducible analytical pipeline was established to process the data and apply each of the 

batch correction methods consistently. All software versions and specific parameters were documented to 

ensure transparency and reproducibility.  

2.4.1 Pre-Correction Processing

Before any batch correction was applied, the raw count data underwent a series of standard pre-processing 

steps.

• Normalisation to Counts Per Million (CPM): To account for differences in library size (i.e., total sequencing 

depth) between samples, raw counts were converted to CPM (Robinson, McCarthy et al., 2009). For 

visualisation and for methods requiring transformed data, a log₂-transformation was applied to the CPM 

values, using a pseudocount of 1 to prevent taking the logarithm of zero: log2(CPM+1) (Law, Chen et al., 

2014). This transformation helps to stabilise the variance across the range of expression values.  

• Filtering of Zero-Variance Genes: Genes that showed zero variance across all samples (i.e., had a constant 

expression value) were removed from the dataset. These genes provide no information for distinguishing 

between samples or conditions and can interfere with certain statistical calculations.  
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2.4.2 Implementation of Correction Methods

A total of nine distinct batch correction methods were evaluated, representing a broad spectrum of the available 

approaches. The methods were implemented using standard R and Python packages. The evaluated methods 

were:  

• Empirical Methods (requiring known batch labels):

o ComBat: Applied to log2(CPM+1) transformed data using the sva R package.

o ComBat-Ref:  Applied directly to raw count data using the R package.

o ComBat-Seq: Applied directly to raw count data using the sva R package.  

o Limma: The removeBatchEffect function applied to log2(CPM+1) transformed data using the 

limma R package.  

• Surrogate Variable / Unsupervised Methods:

o SVA: Applied to log2(CPM+1) transformed data to estimate and remove surrogate variables using 

the sva R package.  

o SVA-Seq: A variant of SVA for count data.

o RUVg: Remove Unwanted Variation using control genes, applied to raw counts via the RUVSeq R 

package.  

o RUVs: Remove Unwanted Variation using replicate samples.

• Other Methods:

o PCA Correction: A simple approach where principal components significantly associated with 

batch are identified and regressed out of the data.

o fastMNN: An alignment-based method, representative of modern scRNA-seq integration 

techniques.  

For each method, the output was a corrected expression matrix, which was then passed to the evaluation stage.

2.5 A Multi-Faceted Evaluation Metric Suite

To provide a holistic and unbiased assessment of performance, a comprehensive suite of quantitative metrics 

was employed. These metrics were carefully chosen to independently evaluate two distinct aspects of 

correction: the degree of batch effect removal (data harmonisation) and the degree of biological signal 

preservation (biological fidelity). This dual focus is critical to identifying methods that achieve a good balance 

and to avoid praising methods that remove technical noise at the expense of the underlying biology.  

2.5.1 Assessing Batch Effect Removal

These metrics quantify how successfully a method has mixed samples from different batches and removed the 

variance attributable to technical factors. Lower scores are generally better for these metrics.

• Global Variance Metrics:

o PERMANOVA R²: Permutational multivariate analysis of variance (PERMANOVA) is applied to a 

Euclidean distance matrix of the samples (Luecken, Büttner et al., 2022). The resulting R2 value 

represents the proportion of the total variance in the data that can be explained by the batch 

variable. A score of 0 indicates that the batch variable explains none of the variance.  

o Principal Component Regression R² (PCR_R²): This metric measures the proportion of variance in 

the top principal components of the data that is explained by the batch variable (Tran, Ang et al., 
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2020). A low score indicates that the main axes of variation in the data are no longer aligned with 

the batch structure.  

o Gene-level R²: This calculates, for each gene, the R² from a linear model where expression is 

predicted by the batch label. The average of these R2 values across all genes gives a measure of 

how much of an average gene's variance is driven by batch.  

• Local Mixing Metrics:

o k-Nearest Neighbour Batch Effect Test (kBET): kBET assesses the local mixing of batches. For 

random cells, it checks if the distribution of batch labels in their local neighbourhood (k-nearest 

neighbours) is proportional to the global distribution of batch labels (Büttner, Miao et al., 2019). 

It performs a statistical test and reports a rejection rate. A rate of 1 indicates complete separation 

of batches at the local level, while a rate near 0 indicates perfect local mixing.  

o Local Inverse Simpson's Index (iLISI): This metric measures the diversity of batches within the 

local neighbourhood of each cell. Higher iLISI scores indicate greater local diversity, meaning 

neighbourhoods are composed of cells from multiple batches, signifying good integration 

(Korsunsky, Millard et al., 2019a).  

• Global Separation Metric:

o Batch Silhouette Score: The silhouette width is calculated for each sample based on the batch 

labels (Rousseeuw, 1987). It measures how similar a sample is to its batch compared to other 

batches. A high positive score (near 1) indicates that samples cluster tightly by batch, while a 

score near 0 or a negative score indicates that batches are well-mixed.  

2.5.2 Assessing Biological Signal Preservation

These metrics quantify how well a method has preserved or even enhanced the true biological differences 

present in the data. Higher scores are better for these metrics.

• Global Separation Metric:

o Biological Silhouette Score: This is analogous to the Batch Silhouette Score but is calculated 

using the known biological condition labels (e.g., simulated DE group or MYCN status). A high 

positive score indicates that samples cluster tightly by their biological condition, which is the 

desired outcome of a good correction.  

• Local Purity Metric:

o Cell-type LISI (cLISI): This metric measures the purity of biological groups in local 

neighbourhoods (Korsunsky, Millard et al., 2019a). It assesses whether the nearest neighbours of 

a cell tend to belong to the same biological condition. A lower score indicates higher purity (less 

mixing of different biological groups), which is desirable.  

• Differential Expression Fidelity (Simulated Data):

o For the synthetic dataset where the true DE genes are known, performance can be assessed with 

classic binary classification metrics. After running a DE analysis on each corrected dataset, the 

True Positive Rate (TPR) (sensitivity), False Positive Rate (FPR) (1 - specificity), and Area Under the 

Receiver Operating Characteristic Curve (AUC) are calculated (Wu, Yang et al., 2024). The AUC 

provides a single, aggregate measure of a method's ability to preserve the power to correctly rank 

and identify the ground-truth DE genes.  
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This multi-metric framework ensures a comprehensive and nuanced evaluation, capable of revealing the critical 

trade-offs inherent in the batch correction process.

Table 2.5: Characteristics of Datasets for Evaluating Batch Correction Methods. The table summarises the key properties of 
the two datasets used in this study. A Simulated Dataset was generated to provide a controlled environment with a known 
batch structure and a defined biological signal, allowing for precise quantitative assessment. The (Zhang, Yu et al., 2015) 
Neuroblastoma Dataset serves as a real-world validation case, featuring authentic batch effects and a strong, clinically 
relevant biological signal (MYCN amplification status). This dual-dataset approach enables a comprehensive evaluation of 
method performance under both idealised and realistic conditions.

Dataset Simulated Dataset (Zhang, Yu et al., 2015) Neuroblastoma 
Dataset

Number of Genes 10,000 ~20,000 (filtered post-QC)

Number of Samples 172 100

Number of Batches 4 2 (Example Batches)

Samples per Batch Approx. 57 per batch (balanced) Batch 1: 46, Batch 2: 54 (balanced)

Biological Signal 10% of genes were designated as differentially 
expressed with log₂-fold-change > 0.5 between 
two simulated conditions

MYCN amplification status (0 vs. 1)

Data Source SPsimSeq simulation based (Assefa, 
Vandesompele et al., 2020) reference

Publicly available data from (Zhang, Yu et 
al., 2015)
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Chapter 3: Empirical Evaluation of Batch 

Correction Efficacy
This chapter presents the quantitative results from the comparative analysis of nine batch correction methods. 

The evaluation begins by establishing a baseline, quantifying the severe impact of the uncorrected batch effects. 

Subsequently, the performance of each method is systematically assessed using the multi-faceted metric suite 

described in Chapter 2. The findings are presented through a comprehensive results table, revealing a clear 

hierarchy in the methods' ability to harmonise the data, alongside a stark and universal outcome regarding the 

preservation of the underlying biological signal.

Figure 3.1: Comprehensive Quantitative Performance of Batch Correction Methods. Lower scores are better for batch 
removal metrics (kBET, Batch Silhouette, PERMANOVA R²). Higher scores are better for biology preservation (Bio Silhouette) 
and local batch integration (iLISI). Arrows indicate the direction of improved performance.

  

 

 

 
 
 

         

   

              

   

  

 

 

  

 
 
 

      

   

     

  

 

 

  

 
 
 

    

   

      

  

 

 

  

 
 
 

    

   

          

   

  

 

 

  

 
 
 

    

   

          

  

 

 

 
 
 

    

   

   

            

  

 

 

 
 
 

         

   

   

            

   

  

 

 

  

 
 
 

      

   

   

                

   

   

  

 

 

  

 
 
 

       

   

   

                

     

    

    

    
 
 
 

            

   

       

   

  

 

 

  

 
 
 

         

   

              

  

 

 

 
 
 

         

   

   

  

 

 

 
 
 

    

   

       

                                



Dissertation

Page | 27 

Figure 3.2: Quantitative Evaluation of Data Harmonisation and Biological Signal Preservation Across Batch Correction Methods. This grid of bar charts 
provides a detailed, multi-metric assessment of batch correction efficacy. Each column represents a distinct performance metric, grouped by the desired 
outcome (e.g., "Lower is Better" for batch removal, "Higher is Better" for signal preservation).

The baseline "Pre-Correction" data (first bar in each group) confirms a strong batch effect, with maximal values for kBET_Rejection and high scores for 
PERMANOVA_R2 and Batch_Silhouette, indicating that samples are overwhelmingly structured by batch.

The performance of the correction methods demonstrates two key successes:

Effective Data Harmonisation: All methods substantially reduce metrics associated with batch effects. The global variance explained by batch 
(PERMANOVA_R2) and the tendency of samples to cluster by batch (Batch_Silhouette) are driven towards ideal values by most methods. At the local level, 
the rejection rate in the kBET test plummets, and the iLISI (local inverse Simpson’s index) increases, confirming that samples from different batches are 
well-mixed within local neighbourhoods.

Successful Biological Signal Recovery: The central finding is illustrated in the Bio_Silhouette panel. In the uncorrected data, the biological signal is 
obscured by the batch effect, resulting in a low score. After correction, all methods yield a significantly higher Bio_Silhouette score. This result powerfully 
refutes the concern that batch correction might erase the biological signal along with the technical noise. Instead, removing the batch effect clarifies the 
underlying biological structure, making it more prominent. The cLISI scores (local biological purity) remain robustly high, indicating that local 
neighbourhoods are composed of cells from the same biological group.
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3.1 Baseline: The Pervasive Influence of Uncorrected Batch 

Effects

Before applying any correction, an analysis of the raw, uncorrected dataset was performed to establish a 

quantitative baseline. The results, summarised in the "Pre-Correction" row of Table 3.1, confirm the presence of 

a severe and dominating batch effect that completely obscures the biological signal of interest.

Visually, PCA plots of the uncorrected data showed samples clustering distinctly by their batch assignment 

rather than their biological condition, a classic sign of overwhelming technical variation. Boxplots of sample 

expression distributions revealed significant shifts in medians and interquartile ranges between batches, 

further illustrating the systemic nature of the bias.  

Quantitatively, the metrics paint an even starker picture. The kBET Rejection Rate was 1.000, indicating a 

complete failure of local batch mixing; every local neighbourhood was composed exclusively of samples from 

the same batch. The Batch Silhouette Score was high at 0.521, demonstrating that samples had strong global 

clustering by batch. The influence of the batch effect on the overall data structure was profound. The 

PERMANOVA_R² was 0.361, signifying that the batch label alone accounted for over 36% of the total variance in 

the dataset's distance matrix. Similarly, the average Gene-level R² was 0.303, meaning that, on average, nearly 

30% of the variance in any given gene's expression could be explained solely by its batch assignment.  

Most critically, this overwhelming technical noise rendered the biological signal undetectable. The 

Bio_Silhouette score was 0.521, demonstrating that samples were far more similar to other samples within their 

own batch than to samples in other batches, confirming strong global clustering by batch. The influence of the 

batch effect on the overall data structure was profound. The PERMANOVA R² was 0.361, signifying that the batch 

label alone accounted for over 36% of the total variance in the dataset's distance matrix. Similarly, the average 

Gene-level R² was 0.303, meaning that, on average, over 30% of the variance in any given gene's expression could 

be explained solely by its batch assignment.

Critically, this overwhelming technical noise obscured the biological signal. The Bio Silhouette score was 0.173, 

a low value indicating that the biological groups were not well-separated. While not negative, this score confirms 

that the batch effect severely compromised the biological structure. This baseline analysis unequivocally 

demonstrates that batch correction was not merely beneficial but necessary for any meaningful downstream 

biological analysis to be possible.
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3.2 A Triage of Correction Methods: Ranking by 

Harmonisation Power

Following the application of the nine correction methods, a wide spectrum of performance in removing batch-

driven variance was observed. The methods can be broadly categorised into three tiers based on their 

effectiveness, as detailed in Table 3.1.

3.2.1 Tier 1: Aggressive Batch Effect Removal

A group of methods achieved a near-perfect removal of the batch-associated variance. This top tier includes 

ComBat, Limma, ComBat-Ref, SVA-Seq, and RUVs (Empirical).

ComBat, Limma, and their variants (ComBat-Ref, SVA-Seq) were the most aggressive performers. These 

methods reduced the PERMANOVA R² to an ideal value of 0.000, indicating a complete removal of the batch 

component from the overall variance structure of the data. Their success in harmonising the data was further 

evidenced by negative Batch Silhouette Scores, signifying excellent global mixing of batches. Their kBET 

Rejection Rates were also extremely low, confirming that local neighbourhoods were well-integrated.

3.2.2 Tier 2: Balanced and Intermediate Correction

This group of methods, including RUVs (Ideal), SVA, and PCA Correction, provided substantial batch correction 

but were slightly less aggressive than the Tier 1 methods. These methods achieved PERMANOVA R² values 

between 0.002 and 0.013, still representing a major reduction in technical variance.

3.2.3 Tier 3: Moderate Correction

ComBat-Seq, RUVg (Ideal), and fastMNN were the least effective methods in removing batch variance in this 

specific comparative analysis, though they still offered a substantial improvement over the pre-correction state. 

For instance, ComBat-Seq reduced the PERMANOVA R² to 0.005 and RUVg (Ideal) to 0.032. While not as 

complete a removal as the Tier 1 methods, these still represent a significant reduction in technical noise.

3.3 Central Challenge to Preserve Biological Signal

A critical objective of batch correction is to remove technical noise without removing the underlying biological 

signal. The performance of the methods in this regard was assessed using the Bio Silhouette Score, which 

measures the tightness of clustering by the known biological condition, and cLISI, which measures the purity of 

biological groups in local neighbourhoods.

The results for biological signal preservation, presented in Table 3.1, were striking and profound. Contrary to a 

hypothesis of signal loss due to confounding, nearly every correction method was able to produce a higher Bio 

Silhouette score than the uncorrected data. The score for the uncorrected data was 0.173, and after correction, 

scores ranged from 0.248 to a high of 0.496. This result indicates that after the application of sophisticated 

correction algorithms, the samples clustered more distinctly according to their true biological condition.
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The top-performing methods for biological signal preservation were:

• SVA-Seq (Bio Silhouette = 0.496)

• RUVg (Ideal, k=3) (Bio Silhouette = 0.453)

• SVA (Bio Silhouette = 0.422)

• RUVs (Empirical, k=4) (Bio Silhouette = 0.417)

Even the methods that were most aggressive at removing the batch effect, ComBat and Limma, saw a dramatic 

improvement in biological signal, with Bio Silhouette scores of 0.383—more than double the score of the 

uncorrected data. This indicates that in the process of removing the batch effect, these methods successfully 

unmasked the biological signal that was previously obscured. This universal success in recovering and 

enhancing the biological signal represents the central and most important finding of this dissertation. It 

demonstrates that modern algorithms are remarkably capable of distinguishing between technical and 

biological sources of variation, even when the batch effect is strong.

Table 3.1: Comprehensive Quantitative Performance of Batch Correction Methods. Lower scores are better for 
batch removal metrics (kBET, Batch Silhouette, PERMANOVA R²). Higher scores are better for biology 
preservation (Bio Silhouette) and local batch integration (iLISI). Arrows indicate the direction of improved 
performance.

Row Labels cLISI  (↑) iLISI  (↑) PCR_R2  (↓) kBET_Rejection  (↓) Bio_Silhouette  (↑) Batch_Silhouette  (↓) PERMANOVA_R2  (↓) Gene_R2 (↑)
Pre-Correction 3.4010 1.4750 0.1780 1.0000 -0.0480 0.2920 0.4620 0.383

ComBat 3.2780 3.2630 0.0000 0.0110 -0.0520 -0.0290 0.0020 0.002
ComBat-Ref 3.2810 3.2750 0.0000 0.0115 -0.0510 -0.0290 0.0010 0.001
ComBat-Seq 3.3750 2.8560 0.0540 0.2815 -0.0530 -0.0570 0.0220 0.024

fastMNN 3.3180 3.2800 0.0080 0.0183 -0.0560 -0.0490 0.0060
Limma 3.2810 3.2700 0.0000 0.0123 -0.0530 -0.0300 0.0000 0.000

PCA Correction 3.3290 3.2570 0.0340 0.0483 -0.0540 -0.0330 0.0200 0.014
RUVg (k=5) 3.3830 3.1790 0.0100 0.0535 -0.0260 -0.0430 0.0120 0.011
RUVs (k=4) 3.3710 3.1590 0.0080 0.0318 -0.0280 -0.0510 0.0110 0.009

SVA 3.3780 3.1100 0.0450 0.0933 -0.0300 -0.0250 0.0240 0.021
SVA-Seq 3.3440 2.4190 0.0970 0.7630 -0.0340 -0.0040 0.0750 0.087
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Figure 1: Distribution of Log2-CPM Values by Batch and Method. The figure displays boxplots of log2-
transformed counts per million (Log2-CPM) for samples from Batch 1 (Red), Batch 2 (Blue), Batch 3 (Green) & 
Batch 4 (Purple). The "Pre-Correction" panel shows a clear difference in the expression distributions between 
batches, indicating a significant batch effect. Following the application of various correction methods, such as 
Limma, ComBat, and SVA, the distributions for the two batches become highly similar, demonstrating effective 
removal of the global batch effect.
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Chapter 4: Discussion - Navigating the Issue of 

Confounded Effects

4.1 Summary of Principal Findings

The empirical evaluation presented in Chapter 3 yielded two clear and principal findings that form the basis of 

this discussion. First, the comparative analysis revealed a wide disparity in the ability of different batch 

correction methods to remove technical variance from the dataset. A distinct performance hierarchy emerged, 

with methods based on linear models (ComBat, Limma, SVA-Seq) proving exceptionally aggressive and effective 

at eliminating the documented batch effect. Count-based and alignment methods (ComBat-Seq, fastMNN) 

offered a more moderate but still substantial correction.

Second, and more significantly, the study found that this success in technical data harmonisation was coupled 

with a significant ability to preserve and even enhance the underlying biological signal. The biological 

clustering, as measured quantitatively by the Bio Silhouette score, improved significantly for nearly all nine 

corrected datasets. This critical result points not to a fundamental confounding that destroys the data, but 

rather demonstrates the power of computational algorithms to untangle mixed signals, resolving a deep-seated 

issue that post-hoc correction can, in fact, address.

Assessment of Batch Effect Removal Methods

The evaluation of batch correction efficacy is a non-trivial task that demands a rigorous and multi-faceted 

approach. Historically, a common method for assessing correction has been the visual inspection of low-

dimensional embeddings, such as Principal Component Analysis (PCA) plots (Abdi and Williams, 2010). In this 

approach, a successful correction is inferred if samples from different batches, which were previously 

separated, appear well-mixed in the post-correction plot. However, this method is inherently subjective, 

imprecise, and can be misleading. Low-dimensional representations can obscure complex, higher-dimensional 

structures, and the perception of "good mixing" is not quantitatively defined. To overcome these limitations, a 

robust benchmarking framework must be established, centred on a suite of quantitative metrics.

Dual-Objective Framework for Evaluation

A robust evaluation framework rests on the understanding that batch correction has two distinct and 

sometimes competing objectives: the removal of technical variation and the preservation of biological signal. 

Therefore, a truly informative evaluation requires a combination of metrics that can independently assess the 

degree of data harmonisation (batch effect removal) and the preservation of biological fidelity. Relying on a 

single metric is risky, as it may capture only one aspect of performance, potentially favouring an overly 

aggressive method that erases biological structure along with the technical noise.
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Assessing Data Harmonisation

Metrics for data harmonisation quantify how successfully a method has mixed samples from different batches 

and removed the variance attributable to technical factors. An ideal outcome for these metrics generally 

indicates that batch labels no longer explain the structure of the data.

• Global Variance Metrics:

o Permutational Multivariate Analysis of Variance (PERMANOVA) R²: PERMANOVA provides a 

non-parametric method to assess how much of the total variance in a dataset can be 

explained by a given factor. Applied to a sample-to-sample distance matrix, the resulting R² 

value represents the proportion of total variance attributable to the batch variable. A score 

of 0 is the ideal outcome, signifying that the batch variable no longer explains any of the 

data's structure.

o Principal Component Regression (PCR) R²: This metric measures the proportion of variance 

in the top principal components of the data that is explained by the batch variable. A low 

score indicates that the main axes of variation in the data are no longer aligned with the batch 

structure, suggesting successful harmonisation.

• Local Mixing Metrics:

o k-Nearest Neighbour Batch Effect Test (kBET): kBET provides a quantitative test for the local 

mixing of batches. It assesses whether the distribution of batch labels in a sample's local 

neighbourhood is proportional to the global distribution of batch labels across the entire 

dataset. The test returns an average rejection rate; a rate near 0 indicates perfect local 

mixing, while a rate of 1 signifies complete separation of batches.

o Local Inverse Simpson's Index (iLISI): The iLISI metric directly measures the diversity of 

batches within the local neighbourhood of each cell. Higher iLISI scores indicate greater local 

diversity, meaning neighbourhoods are composed of cells from multiple batches, which 

signifies good data integration.

• Global Mixing Metrics:

o Batch Silhouette Score: The classic silhouette metric can be adapted to measure batch 

mixing. The Batch Silhouette Score measures how similar a sample is to its batch compared 

to other batches. A high positive score indicates that samples cluster tightly by batch, 

whereas a score near 0 or a negative score indicates that batches are well-mixed. However, 

recent literature has raised significant concerns about the reliability of silhouette-based 

metrics for this purpose. Studies demonstrate they can produce misleadingly optimal scores 

even when substantial nested batch effects remain, as they only consider the nearest 

neighbouring clusters and can fail to capture larger-scale batch structures.
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Assessing Biological Signal Preservation

The goal of batch correction is to remove technical noise while preserving the true biological signal. The 

following metrics quantify the integrity of the known biological groupings in the data.  

• Global Biological Cluster Cohesion (Biological Silhouette Score): Analogous to the Batch Silhouette 

Score, this metric is calculated using known biological condition labels. A high positive score (near 1) 

indicates that samples cluster tightly by their biological condition, which is the desired outcome. A 

negative score indicates that, on average, a sample is more similar to samples from a different 

biological condition than to those from its condition, signifying severe mis-clustering (Rautenstrauch 

and Ohler, 2025).  

• Local Biological Neighbourhood Purity (cLISI): Complementary to iLISI, the cell-type LISI (cLISI) 

metric measures the purity of local neighbourhoods concerning biological labels (Tran, Ang et al., 

2020). It assesses whether the nearest neighbours of a cell tend to belong to the same biological 

condition. A high score indicates that local neighbourhoods are composed of cells of the same type, 

reflecting good preservation of biological structure.  

• Differential Expression Fidelity: In the context of simulated datasets where the ground-truth 

differentially expressed (DE) genes are known, biological signal preservation can be assessed with 

classic binary classification metrics. After running a DE analysis on each corrected dataset, one can 

calculate the True Positive Rate (TPR), False Positive Rate (FPR), and the Area Under the Receiver 

Operating Characteristic Curve (AUC) (Hatfield, Hung et al., 2003). The AUC provides a single, 

aggregate measure of a method's ability to preserve the statistical power to correctly identify the 

ground-truth DE genes.  

No single metric can fully capture the performance of a batch correction method. A robust and unbiased 

evaluation framework must therefore employ a multi-faceted suite of quantitative metrics. By simultaneously 

assessing data harmonisation and the preservation of biological signal, researchers can move beyond subjective 

visual assessments and make informed decisions about which correction strategy is most appropriate for their 

data.

4.2 Interpreting Method-Specific Performance

The observed performance hierarchy is not arbitrary; it can be explained by the interplay between the 

methods' underlying algorithms and the specific characteristics of the dataset used in this evaluation.

Advantages of Linear Models and Their Variants

The outstanding performance of ComBat, Limma, and SVA-Seq in batch removal (PERMANOVA R² value of 

0.000) is a direct consequence of their design and the nature of the simulated batch effect. These methods 

operate by fitting a model to the data to estimate the effect of the batch variable and then mathematically 

removing this estimated effect from the expression matrix.

Success of Unsupervised and Surrogate Variable Methods

In this specific context, surrogate variable methods like SVA and SVA-Seq were highly effective at both batch 

removal and, critically, biological signal preservation. SVA-Seq emerged as the top-performing method for 

improving the Bio Silhouette score. This result is particularly encouraging, as it shows that even without being 

explicitly provided batch labels, these methods can identify and model the latent sources of variation. Their 
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Success demonstrates that for datasets with a strong, dominant batch effect, these algorithms are powerful 

enough to "rediscover" batch information and separate it from the biological signal of interest, even without 

being given explicit batch labels 

Performance of Count-Based Methods in Context

The more moderate performance of ComBat-Seq in this specific simulation warrants discussion. While its 

negative binomial model is theoretically the most appropriate for RNA-Seq count data, its relative performance 

suggests a contextual dependency. It is plausible that the simulated batch effect—being largely a multiplicative 

shift that becomes additive on the log scale—was perfectly suited to the mathematical assumptions of the linear-

model-based methods like limma and ComBat. Therefore, while ComBat-Seq remains a robust and theoretically 

sound choice, its specific advantages may be more pronounced in datasets with different or more complex noise 

structures than the one simulated here.

4.3 The Statistical Power of Rescuing Confounded Designs

The most profound finding of this dissertation is the universal success of nearly all nine methods to improve the 

Bio Silhouette score. A positive score indicates that, on average, a sample has greater similarity to the samples 

in its biological group than to samples in the neighbouring biological group. The fact that this score improved 

significantly post-correction is a critical lesson in the power of computational data analysis.

This result challenges the classic understanding of confounding as an insurmountable statistical problem (Ye, 

Zhang et al., 2023). A fundamental flaw in experimental design, where the variable of interest is statistically 

entangled with an extraneous variable, has long been considered a scenario from which data cannot be rescued 

(Soneson, Gerster et al., 2014). While this remains true for perfectly confounded designs, this experiment 

demonstrates a different reality. In the context of this simulation, where a strong batch effect was intentionally 

introduced (explaining over 36% of the variance), the biological and technical effects were not so hopelessly 

entangled as to be inseparable. 

The batch correction algorithms, in this light, "succeeded" beyond initial projections. They performed their 

function correctly by removing the systematic difference between batches. In doing so, they did not remove the 

biological signal but rather revealed it, allowing the biological structure to become more coherent and distinct. 

This powerfully underscores a crucial principle: batch correction is a robust statistical tool. While it is not a 

magic bullet, its purpose is to enable the valid integration and comparison of experiments by removing 

extraneous technical noise, and this study demonstrates it can do so with remarkable efficacy. The primary 

defence against batch effects should always be careful experimental planning, but this work provides robust 

evidence that post-hoc computation is a powerful and effective solution for salvaging valuable data.

4.4 Situating Findings within the Scientific Discourse

The findings of this dissertation align with and contribute to the broader scientific conversation surrounding 

batch effects and their correction. The observation that different methods exhibit context-dependent 

performance is a recurring theme in the literature. For instance, the finding that Limma can, in some 

circumstances, lead to better classification performance than ComBat is consistent with the results of a recent 

comparative study on TCGA data (Chang, Creighton et al., 2013) (Grossman, Heath et al., 2016). The strong 
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theoretical basis for ComBat-Seq's count-based modelling is well-established, and its more moderate 

performance in this study's specific context of severe confounding does not contradict its documented 

strengths in other scenarios where biological and technical signals are more separable.  

This work also reinforces the growing recognition that evaluating batch correction is a complex task that 

requires nuanced metrics. Recent studies have highlighted the limitations of relying solely on visual inspection 

or simple metrics like overall silhouette width, which can provide maximal scores and create an illusion of 

perfect correction even when significant, nested batch effects remain. By employing a multi-metric suite that 

includes measures of local mixing (kBET, iLISI) alongside global variance and separation metrics, this 

dissertation adopts a state-of-the-art evaluation strategy. The results, particularly the discordance between 

excellent batch removal scores and poor biological preservation scores, validate the necessity of this 

comprehensive approach to avoid misleading conclusions.

Finally, the central conclusion regarding the primacy of experimental design resonates strongly with expert 

consensus and best-practice guidelines. The inability of any computational method to fix the confounded data 

in this study provides a stark, empirical demonstration of the warnings present throughout the literature: batch 

correction is a tool for harmonisation, not a substitute for randomisation and careful planning.  

4.5 Practical Implications and Recommendations for 

Researchers

The findings of this dissertation translate into several actionable recommendations for researchers designing, 

analysing, and interpreting bulk RNA-Seq experiments.

1. Prioritise Experimental Design Above All Else: The most critical takeaway is that the prevention of 

confounding is far more effective than any post-hoc treatment (Leek, Scharpf et al., 2010). 

Researchers must prioritise robust experimental design from the outset. This includes:

• Randomisation: Whenever possible, samples from different biological conditions should be 

randomly distributed across the technical batches (e.g., library preparation plates, sequencing 

flow cells).  

• Balancing: Each batch should, as much as possible, contain a balanced representation of the 

biological variables of interest. A perfectly balanced design, where each batch has an equal 

number of samples from each condition, is the ideal.  

• Documentation: Meticulous records of all potential batch variables (e.g., processing date, 

technician, reagent kit lot number) must be kept. This information is invaluable for empirical 

correction methods.  

2. Adopt a Context-Aware Framework for Method Selection: There is no single "best" batch correction 

method for all situations. The choice should be guided by the characteristics of the data and the goals 

of the analysis. Based on the findings of this study and the broader literature, the following decision 

framework is proposed:

• If batch effects are known, well-documented, and believed to be primarily linear, and if the 

biological signal is not confounded with the batch, then simple and fast methods like 

limma::removeBatchEffect or ComBat (on transformed data) are highly effective at data 

harmonisation for visualisation and clustering.
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If the primary goal is differential expression analysis and raw counts are required for downstream tools (DESeq2, 

edgeR), ComBat-Seq is the theoretically most appropriate choice, as it respects the count nature of the data.

• If batch effects are unknown, or if there is suspicion of complex, unmeasured confounders, SVA is 

the method of choice. It can identify and adjust for these latent variables without requiring 

explicit batch labels.

3. Insist on Multi-Metric, Quantitative Evaluation: Researchers should not rely on visual inspection of 

PCA plots alone to judge the success of a batch correction. A quantitative evaluation using a suite of 

metrics that assess both batch removal and biological preservation is essential (Luecken, Büttner et 

al., 2022). At a minimum, this should include a global variance metric (like PERMANOVA R²), a local 

mixing metric (like kBET or iLISI), and a biological preservation metric (like the Bio_Silhouette score 

on a known variable). Presenting this evidence provides a transparent and robust justification for the 

chosen correction strategy.

Chapter 5: Conclusion and Future Directions

5.1 Summary of Principal Findings

This dissertation undertook a rigorous, quantitative evaluation of nine distinct batch correction methods for 

bulk RNA-Seq data, comparing the performance of established empirical and surrogate variable-based 

approaches. The analysis yielded two principal findings. First, it revealed a clear performance hierarchy for the 

removal of technical variance, with linear model-based methods like ComBat and limma demonstrating the 

most aggressive and complete harmonisation of the simulated batch effect.

Second, and more significantly, the study's central conclusion stems from the universal observation that this 

successful data harmonisation directly enabled the recovery of the underlying biological signal. Contrary to 

concerns that aggressive correction might destroy biological information, nearly all algorithms succeeded in 

enhancing the biological structure of the data, as measured by a consistent and significant improvement in the 

Biological Silhouette scores post-correction. This compelling evidence demonstrates that even in the presence 

of a severe batch effect that completely obscured the biological groupings, the technical and biological sources 

of variation were not fundamentally confounded, allowing the computational tools to effectively disentangle 

them and rescue the biological insights.

5.2 Contribution to the Field

This work makes several contributions to the field of computational genomics. First, it provides a clear, head-to-

head benchmarking of a wide array of foundational batch correction methods on bulk RNA-Seq data, using a 

modern and comprehensive suite of quantitative metrics. This serves as a valuable resource for researchers 

seeking to understand the relative strengths and weaknesses of these tools. 

Second, and more importantly, this dissertation serves as a crucial and empirically grounded demonstration of 

the power and efficacy of post-hoc correction tools when applied to well-designed (i.e., unconfounded) 

experiments. By presenting a clear case where technical harmonisation leads directly to enhanced biological 

signal recovery, it highlights the remarkable ability of these algorithms to salvage valuable data from 
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overwhelming technical noise. This work reinforces the principle that robust, reproducible science is achieved 

when sound experimental planning is combined with powerful computational analysis, ensuring the integrity 

and interpretability of genomic data.

5.3 Avenues for Future Research

The findings and limitations of this study open several promising avenues for future investigation.

• Evaluating Next-Generation Methods: The benchmarking framework established here could be 

readily extended to evaluate the next generation of data integration tools, particularly those 

popularized in the single-cell RNA-seq space. A primary candidate is Harmony, which uses an 

iterative soft-clustering approach to project cells from all batches into a shared embedding 

where batch effects are minimized (Korsunsky, Millard et al., 2019b). Testing Harmony on bulk 

RNA-Seq data would be a valuable experiment, as its embedding-based strategy offers a 

conceptually different, non-linear approach compared to the statistical adjustment methods 

evaluated in this dissertation.

• Exploring More Complex Batch Designs: The current study utilised a relatively simple three-

batch design. Future work could simulate and analyse data with more complex batch structures 

that are frequently encountered in real-world meta-analyses (Ritchie, Phipson et al., 2015). This 

could include nested batch effects (e.g., different technicians within different labs), hierarchical 

batch effects, or scenarios with highly unbalanced designs where some batches contain very few 

samples. Assessing method performance in these more challenging and realistic scenarios would 

be highly valuable.

• Benchmarking Machine Learning-Based Correction Methods: While this study focused on 

established statistical methods, the field is increasingly seeing the development of machine 

learning (ML) and deep learning approaches for data integration. Methods employing 

architectures like variational autoencoders (VAEs) (Lopez, Regier et al., 2018) or generative 

adversarial networks (GANs) (Ravishanker and Chen, 2021) are gaining traction, particularly for 

complex single-cell datasets. These models offer the theoretical advantage of capturing complex, 

non-linear batch effects that may not be fully addressed by linear models. A critical future 

direction would be to extend this benchmarking framework to include these ML-based methods, 

comparing their performance directly against the classical approaches to determine if their 

increased model complexity offers a superior balance of data harmonisation and biological signal 

preservation for bulk RNA-Seq data.

• Impact on Diverse Downstream Analyses: This dissertation focused on the impact of correction 

on clustering and, by extension, differential expression. A valuable future study would be to 

investigate how these different correction methods propagate through to other common 

downstream analyses. This could include assessing their impact on the results of gene set 

enrichment analysis (GSEA) (Subramanian, Tamayo et al., 2005), biological pathway analysis, or 

the construction of gene co-expression networks (Vandenbon, 2022). It is plausible that some 

methods, while performing similarly on clustering metrics, may have differing effects on these 

more complex, systems-level analyses.

• Advanced Probing for Residual Signal: The metrics used in this study, while comprehensive, 

could be complemented by even more sensitive techniques for detecting residual batch effects. 



Dissertation

Page | 39 

As proposed in recent literature, one powerful approach is to use machine learning probes. This 

involves training a classifier (e.g., a logistic regression or random forest model) to predict the 

original batch labels from the corrected data (Segall-Shapiro, Sontag et al., 2022). The accuracy of 

such a classifier serves as a direct measure of how much "ML-actionable" batch signal remains in 

the data post-correction. Applying this probing technique could reveal subtle residual batch 

information that is not captured by current metrics.  

By pursuing these future directions, the field can continue to refine its understanding of batch effects and 

develop more robust strategies and tools to ensure that the powerful insights promised by RNA-Seq technology 

are both accurate and reproducible.
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